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Abstract. Establishing robust methods and metrics to evaluate habitat quality is critical for the recovery
of endangered Pacific salmonids (Oncorhynchus spp.). A variety of modeling approaches are used for status
and trend monitoring of anadromous species throughout the Pacific Northwest, USA, but current methods
may fail to capture the complex relationship between fish and habitat and are often limited in predictive
power beyond specific watersheds. Further, the focus on species distribution and abundance is not easily
manipulated to predict carrying capacity and traditional stock-recruitment analyses are reliant on long-
term data which are not always available. In this study, we developed a quantile random forest model to
provide estimates of habitat carrying capacity for Chinook salmon (O. tshawytscha) parr during the sum-
mer months, at both the site and watershed scale. Quantile random forest models allow for the considera-
tion of noisy data, correlated variables, and non-linear relationships: common features in fish–habitat
datasets. We leveraged Columbia Habitat Monitoring Program data to select habitat co-variates and pre-
dict capacity at those sites. We also identified a set of globally available attributes to extrapolate capacity
estimate predictions throughout wadeable streams within the Columbia River basin. Total capacity esti-
mates for watersheds closely matched estimates from alternative fish productivity models. Carrying capac-
ity estimates based on quantile random forest models, like those presented here, provide managers a
framework to guide the identification, prioritization, and development of habitat rehabilitation actions to
recover salmon populations.
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INTRODUCTION

The decline of anadromous Pacific salmon
(Oncorhynchus spp.) across the Pacific Northwest,
USA has prompted numerous actions aimed at
reversing that trend. These actions are often cate-
gorized into four H’s: harvest modification,
hatchery practices, hydrosystem operations, and
habitat rehabilitation. Problematically, there is

substantial uncertainty regarding the degree of
change that can be exerted across and within
these categories, and what combination of
changes will most cost-effectively and sustain-
ably reduce mortality. Freshwater habitat capac-
ity deficits have recently been identified as a
major factor directly impacting population abun-
dance which has been largely overlooked in
Columbia River Basin salmonids (Bond et al.
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2019, Hinrichsen and Paulsen 2020, NOAA Fish-
eries 2020). Specifically, restoring salmonid carry-
ing capacity through tributary rehabilitation
actions has been identified as a key component
of recovery efforts for salmon and steelhead (O.
mykiss) in the Pacific Northwest, USA (NOAA
Fisheries 2016a,b). Efforts have included increas-
ing and improving existing habitat for both
spawning adults and rearing juveniles. However,
estimating habitat carrying capacity (both his-
toric and contemporary) for various life stages of
Pacific salmon, as well as identifying important
habitat characteristics that influence capacity, has
been an ongoing but necessary challenge (Bond
et al. 2019, Hinrichsen and Paulsen 2020, NOAA
Fisheries 2020). Reliable methods to better under-
stand fish–habitat relationships and estimate
capacity are necessary to identify those salmon
and steelhead life stages that are limited by habi-
tat capacity to better direct tributary rehabilita-
tion efforts.

When it comes to estimating carrying capacity,
spawner–recruit models are the gold standard
(Moussalli and Hilborn 1986, Myers et al. 1999).
However, such models require a long time-series
of accurate estimates of abundance for adults
and juveniles, with variation in the number of
adults. Such data are unavailable in most water-
sheds (Cramer and Ackerman 2009), and they
do not necessarily allow one to link capacity to
habitat characteristics, except perhaps at the
watershed scale. Bioenergetics approaches, such
as the net rate of energy intake (NREI) have
been applied to salmonids to estimate capacity
on the 200–600 m reach scale (Wall et al. 2016).
However, there are some potential issues with
how the food supply (i.e., invertebrate drift) is
measured with these methods that could lead to
biases in capacity estimates (Dodrill and Yack-
ulic 2016) as well as difficulty in properly con-
straining drift depletion and inter-species
competition, and computational and spatial limi-
tation of this modeling approach (Wall et al.
2016, Carmichael et al. 2020). In addition, those
authors did not take the step of scaling the
capacity predictions at the reach scale to entire
watersheds. In contrast, Sweka and Mackey
(2010) estimated carrying capacity of Atlantic
salmon (Salmo salar) parr at the watershed scale,
using a quantile regression approach, but the
only habitat covariate they included was

cumulative drainage area. Estimates of salmonid
carrying capacity that leverage fish–habitat rela-
tionships are lacking at the watershed scale in
the Pacific Northwest.
Most studies that have investigated fish–habitat

relationships focus on predicting a species’ distri-
bution (presence/absence) or the average abun-
dance or density: neither of which can be easily
manipulated to predict carrying capacity. Further,
many of these studies focus on only one or two
measures of habitat. Fausch et al. (1988) con-
ducted a thorough review of attempts to predict
the abundance of fish from measurable habitat
covariates from 1950 to 1985 and found that the
vast majority of multiple linear regression models
failed to detect a significant fish–habitat signal.
Since that review, there has been progress in iden-
tifying some fish–habitat relationships for several
salmonid species. Nickelson et al. (1992) demon-
strated that juvenile coho salmon (O. kisutch) were
found in higher densities within pool habitat on
the Oregon coast. Similarly, pool and pond densi-
ties were good predictors of coho smolt densities
in western Washington (Sharma and Hilborn
2001). Bryant and Woodsmith (2009) found that
juvenile coho abundance was positively related to
large wood at the reach scale; however, their
results demonstrated a negative relationship
between abundance and the number of pools.
Braun and Reynolds (2011) similarly found posi-
tive associations between spawner densities of
sockeye salmon (O. nerka) in the Fraser River and
large wood, in addition to positive relationships
to percent undercuts and percent pools. Densities
of adult spawning coho were also higher in
forested areas compared with urban or agricul-
tural areas in the Snohomish River watershed
(Pess et al. 2002). Mossop and Bradford (2006)
examined juvenile Chinook salmon (O. tsha-
wytscha) in the Yukon River and found positive
correlations between the log of fish density and
several metrics related to residual pool dimen-
sions and large woody debris abundance, as well
as a negative correlation between fish density and
gradient. These studies were focused on predict-
ing observed fish densities, not necessarily capac-
ity, and for most of them the predictive extent is
limited to a particular watershed. In addition,
they all assumed some form of linear fish–habitat
relationship which often results in weak predic-
tive power.
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A number of studies have used other modeling
approaches to elicit fish–habitat relationships.
Dunham et al. (2002) used a quantile regression
approach to show a negative relationship
between cutthroat trout (O. clarkii) densities and
the width:depth ratio of a stream for the upper
quantiles of trout density. The same approach
was also used to map the potential extent of sole
(Solea solea) in the English Channel and southern
North Sea (Eastwood et al. 2003). Machine learn-
ing models such as boosted regression trees and
random forests have been used to examine spe-
cies biomass, diversity, and distribution for a
number of different species (Pittman et al. 2009,
Knudby et al. 2010, Compton et al. 2012). The
results from these studies highlight the impor-
tance and effectiveness of using techniques that
can accommodate non-linear fish–habitat rela-
tionships, and provide motivation for furthering
research in this realm.

For the purposes of this paper, we define car-
rying capacity as the maximum number of indi-
viduals that can be supported given the quantity
and quality of habitat available at a given life
stage. We assume that higher observed relative
densities within a given life stage are a function
of habitat quantity and quality. Furthermore, we
assert that observed fish density is a poor proxy
of habitat capacity owing to both a paucity of
individuals, especially for threatened or endan-
gered species, and the existence of unmeasured
variables that may serve to limit capacity. To
address this, we have developed a model to esti-
mate juvenile rearing capacity for Pacific salmon
in wadeable streams based on quantile random
forest (QRF; Meinshausen 2006) models using
measurements of fish abundance and density,
and habitat characteristics. QRF models combine
the theory and justification of quantile regression
modeling (Koenker and Bassett 1978, Cade and
Noon 2003) with the flexibility and framework of
random forest models (Breiman 2001). They
account for unmeasured variables and can be
used to describe the entire distribution of pre-
dicted fish densities for a given set of habitat con-
ditions, not just the mean expected density.
Random forest models have been shown to out-
perform more standard parametric models in
predicting fish–habitat relationships in other con-
texts (Knudby et al. 2010). Quantile random for-
ests share many of the benefits of random forest

models, such as the ability to capture non-linear
relationships between independent and depen-
dent variables, naturally incorporate interactions
between covariates, and work with untrans-
formed data while being robust to outliers (Pra-
sad et al. 2006). In addition, quantile regression
models have been used in a variety of ecological
systems to estimate the effect of limiting factors
(Terrell et al. 1996, Cade and Noon 2003).
The fish abundance/density and habitat data

used to fit the QRF model presented here were
available from seven watersheds within the inte-
rior Columbia River basin, Pacific Northwest,
USA. Within the interior Columbia River basin
two major runs of Chinook salmon occur, stream-
type (i.e., spring/summer-run) and ocean-type
(i.e., fall run), each characterized by different life
history characteristics. Stream-type Chinook sal-
mon adults enter freshwater from the ocean ear-
lier in the year, spawn in the upper reaches of a
watershed, and the juveniles rear for up to
16 months in freshwater before entering the ocean
as smolts. Ocean-type Chinook salmon adults
enter freshwater later (e.g., fall or winter), spawn
lower in the watershed, and the juveniles may
spend between several weeks and six months in
freshwater before migrating to the ocean as sub-
yearlings. Here, we focus on stream-type Chinook
salmon, and in particular the juvenile summer
rearing period during low flow, during which
juveniles are often termed parr, referring to the
camouflage markings that occur on their sides
during this life stage. Data presented here are
from Chinook salmon populations in the Upper
Columbia River spring-run and Snake River
spring/summer-run Evolutionary Significant Units
(ESU). The Upper Columbia spring-run ESU is
listed as endangered under the Endangered Spe-
cies Act, the Snake River spring/summer-run is
listed as threatened (NOAA Fisheries 2016a,b).
Hereafter, we refer to both ESUs simply as Chi-
nook salmon.
In this study, we developed a QRF model to:

1. identify measured habitat characteristics
that are most strongly associated with
observed Chinook salmon parr abundance
and density,

2. elicit fish–habitat relationships for those
habitat characteristics identified as impor-
tant for determining fish abundance and
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density, using paired fish and habitat mea-
surements,

3. predict contemporary habitat carrying
capacity at all sites where the important
habitat characteristics are measured,

4. extrapolate capacity predictions at mea-
sured habitat sites across a watershed using
globally available attribute data to estimate
the Chinook salmon parr capacity of that
watershed, and

5. validate estimates of carrying capacity from
our approach across multiple watersheds
using independent estimates of capacity
(e.g., spawner–recruit relationships).

Our study incorporates multiple measures of
stream habitat to estimate fish–habitat relation-
ships that encompass the collinear nature of most
stream habitat metrics and can be used to predict
carrying capacity. Our approach moves across
several spatial scales, inferring fish–habitat rela-
tionships from detailed, localized habitat data
and extrapolating capacity predictions across
wide swaths of unsampled locations. Addition-
ally, this approach for estimating life stage speci-
fic habitat-based carrying capacity can be used to
quantitatively identify the magnitude of tribu-
tary habitat rehabilitation necessary to support
delisting. Given the multitude of (often
correlated) habitat metrics and the potentially
non-linear fish–habitat relationships that define
capacity as a function of habitat, we explore the
application of QRF modeling to habitat capacity
estimation, validated using data from Columbia
River Chinook salmon. For perhaps the first
time, the necessity of tributary habitat rehabilita-
tion can be demonstrated, and the magnitude of
required change can be placed in context with
the other H’s.

METHODS

Study site
Habitat data used in our study were collected

from eleven watersheds within the interior
Columbia River basin, Pacific Northwest, USA
(Fig.1). The Columbia River basin covers more
than 668,000 km2 draining large portions of
Idaho, Oregon, and Washington, and smaller
portions of Montana, Nevada, Utah, and Wyom-
ing, as well as the southeastern portion of British

Columbia. The habitat data used to populate the
QRF model were collected by the Columbia
Habitat Monitoring Program (CHaMP; Volk
et al. 2017) and were downloaded from https://
www.champmonitoring.org. Data from the fol-
lowing eleven CHaMP watersheds were used in
this study: Asotin, Entiat, John Day, Lemhi,
Methow, Minam, South Fork Salmon, Tucannon,
Upper Grande Ronde, Wenatchee, and Yankee
Fork Salmon. Juvenile density and abundance
data were collected in a subset of seven water-
sheds (see Table 1 and Fig. 1) at CHaMP survey
reaches and were graciously provided by a num-
ber of agencies and projects, including the Inte-
grated Status and Effectiveness Monitoring
Project (Volk et al. 2017).

Data
CHaMP sites are 200–600 m reaches in wade-

able streams across select watersheds within the
interior Columbia River basin. The sites were
selected based on a spatially balanced general-
ized random tessellation stratified sample selec-
tion algorithm (Stevens and Olsen 1999, 2004).
Habitat data within CHaMP sites were collected
using the CHaMP protocol (CHaMP 2016) which
calls for field data collection during the low-flow
period, typically from June through October.
CHaMP habitat data include, but are not limited
to, measurements describing channel complexity,
channel units, disturbance, fish cover, large
woody debris, riparian cover, stream size
(depth, width, discharge), substrate, tempera-
ture, macroinvertebrate productivity, and water
quality.
Juvenile fish surveys were conducted for Chi-

nook salmon parr during the summer low-flow
season at many of the same sites surveyed using
the CHaMP protocol. Survey methods included
mark-recapture, three-pass removal sampling,
two-pass removal sampling, single-pass elec-
trofishing, and snorkeling. These data were used
to estimate Chinook salmon parr abundance at
all CHaMP sites where fish survey data were
available. Three-pass removal estimates used the
Carle-Strub estimator (Carle and Strub 1978), fol-
lowing advice from Hedger et al. (2013). Two-
pass removal estimates used the estimator
described by Seber (2002). Mark-recapture esti-
mates used Chapman’s modified Lincoln-Peter-
son estimator (Chapman 1951) and were deemed
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valid if they met the criteria described in Robson
and Regier (1964). These estimates were made
using the removal function from the FSA pack-
age (Ogle et al. 2020) or the closedp.bc function
from the Rcapture package (Rivest and Bail-
largeon 2019) in R software (R Core Team 2019).
Snorkel counts were transformed to abundance
estimates using paired snorkel-electrofishing
sites to calibrate snorkel counts. For sites with
invalid estimates or that were sampled with a
single electrofishing pass, we developed an esti-
mate of capture probability based on valid esti-
mates, using a binomial generalized linear mixed
effects model. Fixed effects were species, wetted
width of the site, density of fish caught on the
first pass, and all possible two-way interactions.

We included a random effect for fish crew/water-
shed. We used this model to predict abundances
based on the number of fish caught on the first
pass and any other covariates.
Abundance estimates at all sites were then

translated into linear (parr/m) fish densities
which were paired with the associated CHaMP
habitat data. For sites that were sampled in mul-
tiple years, only the fish and habitat data from
the year with the highest observed fish density
was retained to avoid possible pseudo-
replication, while remaining consistent with our
goal of estimating carrying capacity. After
removing duplicate sites, our initial dataset con-
tained 327 unique sites with paired fish–habitat
data (Table 1). We did explore using areal fish
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Fig. 1. Watersheds with CHaMP habitat data. Watersheds in black also contain paired fish data. Watershed
names are (1) Entiat, (2) John Day, (3) Lemhi, (4) Methow, (5) Minam, (6) Secesh, (7) South Fork Salmon, (8)
Tucannon, (9) Upper Grande Ronde, (10) Wenatchee, (11) Yankee Fork Salmon.
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densities (parr/m2) as the response but found
very similar results; so, in the interest of brevity
we only present results based on linear fish
densities.

Habitat covariate selection
A key step in developing a QRF model to pre-

dict fish capacities was selecting the habitat
covariates to include in the model. The CHaMP
program generated more than 100 habitat met-
rics at each site, many of which were correlated
with each other to one degree or another, as is

often the case with stream habitat variables. We
sought to include a small set of covariates that
were not overly redundant (i.e., not highly corre-
lated), described many aspects of stream habitat
(e.g., substrate, temperature, and complexity),
and were highly associated with the observed
fish densities, presumably because they con-
tained information about what types of habitat
fish sought or avoided. Full details of how the
twelve covariates used in the QRF model were
selected can be found in Appendix S1.

QRF model fit
Using the selected habitat covariates (Table 2),

we fit a QRF model to predict habitat rearing
capacity for Chinook salmon parr during sum-
mer months using the natural log of fish densi-
ties as the response. After constructing a random
forest, predictions of the mean response can be
made by averaging the predictions of all trees,
similar to the expected value predictions from a
statistical regression model. The individual pre-
dictions from each tree, viewed collectively,
describe the entire distribution of the predicted
response; therefore, the random forest model can
be used in the same way as other quantile regres-
sion methods to predict any quantile of the

Table 1. The number of unique sites, by watershed,
with paired fish–habitat data used to populate the
spring/summer-run Chinook salmon parr capacity
QRF model.

Watershed Sites (n) Percent

Entiat 61 18.7
John Day 75 22.9
Lemhi 33 10.1
Minam 20 6.1
South Fork Salmon 30 9.2
Upper Grande Ronde 86 26.3
Wenatchee 22 6.7
Total 327 100.0

Table 2. Habitat metrics and descriptions of metrics included in the QRF model to predict spring/summer-run
Chinook salmon parr capacity.

Rank Metric Metric Category Description

1 Wetted width Size Average width of the wetted polygon for a site.
2 Discharge Size The sum of station discharge across all stations. Station

discharge is calculated as depth 9 velocity 9 station increment
for all stations except first and last. Station discharge for first
and last station is 0.5 9 station width 9 depth 9 velocity.

3 Avg. August temp. Temperature Average predicted daily August temperature from NorWest,
averaged across the years 2002–2011.

4 Width:depth ratio Complexity Average width to depth ratio of the wetted channel measured
from cross-sections. Depths represent an average of depths
along each cross-section.

5 Fines Substrate Average percentage of pool-tail substrates comprised of sediment <6 mm.
6 Fish cover Cover Percent of wetted area with the following types of cover:

aquatic vegetation, artificial, woody debris, and terrestrial vegetation.
7 Channel unit frequency ChannelUnit Number of channel units per 100 m.
8 Depth complexity Complexity Standard deviation of water depths within the wetted channel.
9 Large wood freq. in pools Wood Total volume of large wood pieces within the wetted channel

and slow water/pool channel units, scaled by site length.
10 Riparian canopy Riparian Percent of riparian canopy with some vegetation.
11 Substrate: D16 Substrate Diameter of the 16th percentile particle derived from pebble counts.
12 Braidedness Complexity Ratio of the total length of the wetted mainstem channel

plus side channels and the length of the mainstem channel.

Note: Metrics are ranked in the order of relative importance.
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response. There were missing values for some
habitat data; thus, any site visit with more than
three missing covariates was removed from the
dataset and the remaining missing habitat values
were imputed using the missForest R package
(Stekhoven and B€uhlmann 2012, Stekhoven
2013). We fit the QRF models using the quantreg-
Forest function from the quantregForest package
(Meinshausen 2017) in R software (R Core Team
2019), incorporating data from 327 records
(paired fish–habitat data) and twelve habitat
covariates (27.2 data points per covariate;
Table 2). The 90th quantile of the predicted dis-
tribution was used as a proxy for carrying capac-
ity following the suggestion of Sweka and
Mackey (2010), and to avoid higher quantiles
that draw from the very upper tails of observed
fish density, where the variability of predictions
may be influenced by small sample size issues.

After model fitting, the QRF model was then
used to predict capacity at sites with measure-
ments of the habitat covariates that were used to
fit the model. In our case, this includes all sites
within CHaMP basins in the interior Columbia
River basin. For CHaMP sites that were sampled
in multiple years, we first calculated the mean
for each habitat metric among years to make pre-
dictions. In total, we generated 589 predictions of
Chinook salmon parr capacity, during summer
months, for the following basins: Entiat, Grande
Ronde (including Minam), John Day, Lemhi,
Methow, South Fork Salmon, Tucannon,
Wenatchee, and Yankee Fork Salmon. CHaMP

sampled between 1% and 28% of the Chinook
domain within these watersheds, with an aver-
age of 11%.

Extrapolating to other sites
To predict capacity at larger spatial scales, such

as the watershed or population, we developed an
extrapolation model based on globally available
attributes (GAA) which were available for the
entirety of tributary habitat utilized by a given
population. The GAA data used here were taken
from the list of generalized random tessellation
stratified master sample sites that the CHaMP
sites were originally selected from (Larsen et al.
2008, 2016). Possible covariates included temper-
ature range, elevation, watershed, the first princi-
pal component of a natural feature classification
and human disturbance classification (Whittier
et al. 2011), the square root of cumulative drai-
nage area, stream power, slope, channel type,
bankfull width, and average August temperature
(Table 3). The natural log of the CHaMP site
capacity predictions (parr/m) was used as the
response variable in a multiple linear regression
model that incorporated the design weights of
the CHaMP sites using the svyglm function from
the survey package (Lumley 2020) in R software
(R Core Team 2019). The design weights are gen-
erated from how much of the watershed each site
is meant to represent. Because the CHaMP sites
were selected from strata that usually comprised
unequal portions of that watershed, these
weights must be accounted for to lead to

Table 3. Globally available attribute (GAA) habitat covariates used to extrapolate quantile random forest (QRF)
model predictions of spring/summer-run Chinook parr capacity to a larger scale (e.g., watershed, population),
with their coefficients and standard errors.

Covariate Units Spatial scale Estimate SE

Temperature range C Reach-2 km �0.044 0.081
Elevation m Site-300 m �0.243 0.155
CHaMP watershed ** Region . . . . . .

Natural Class PCA 1 ** Watershed-HUC12 �0.092 0.070
Disturbance Class PCA 1 ** Watershed-HUC12 �0.064 0.064
Drainage area (sqrt) km2 (square root) Reach-2 km �0.141 0.077
Stream power ** Reach-2 km 0.049 0.033
Slope m/m Reach-2 km �0.513 0.100
Channel type ** Site-300 m . . . . . .

Bankfull width, modeled m Site-300 m 0.216 0.099
NorWeSTAugust temperature C Reach-2 km �0.149 0.119

** No units of measurement for this covariate.
. . . Multiple coefficients estimated for this factor.
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unbiased model coefficients (Nahorniak et al.
2015). We fit two different extrapolation models,
one that included watershed as a covariate for
use in predicting capacity within CHaMP water-
sheds, and one that did not for predicting every-
where else. We then made predictions of linear
capacity at all master sample sites throughout
the interior Columbia River basin, generally
spaced about one kilometer apart. These points
do not represent specific segments of streams,
however, so some form of spatial averaging of

capacity predictions to generate larger scale
capacity estimates is necessary.
To summarize capacity at larger scales, the

mean linear capacity (e.g., parr/m) of the master
sample points along a particular tributary is mul-
tiplied by the length of that tributary. We first
restricted the upstream limit of master sample
points and lengths of streams to those within the
domain of spring/summer-run Chinook salmon,
as defined by StreamNet (http://www.streamnet.
org) or used expert opinion from local biologists,

Fig. 2. Conceptual diagram showing input data sources, modeling decisions, model outputs, etc., for the QRF
and extrapolation models.
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and the downstream limit by when streams were
no longer wadeable (often determined by some
combination of estimated bankfull width and
cumulative drainage area). The capacities of vari-
ous tributaries could then be summed to estimate
capacity at almost any spatial scale. A conceptual
diagram showing the data and modeling frame-
work of the QRF and extrapolation models is
shown in Fig. 2.

Model validation
Spawner–recruit data from several watersheds

within the interior Columbia River basin were
compiled to validate the extrapolated QRF esti-
mates of Chinook salmon parr capacity. Some
watersheds had direct estimates of parr, while
some had estimates of pre-smolts and smolts
(i.e., fall and spring emigrants) from rotary screw
traps. For the latter, estimates of parr were calcu-
lated using estimates of over-winter survival to
back-calculate parr from smolt estimates, and
then adding that to pre-smolt estimates. A series
of spawner–recruit functions were then fit to this
data including Beverton-Holt, Ricker, and
hockey stick (Froese 2008), using the FSA pack-
age (Ogle et al. 2020) in R. Estimates of capacity
from each of these spawner–recruit curves were
compared with QRF estimates of capacity for the
same regions.

All code and data for the analyses presented
here can be found in a GitHub repository
(https://doi.org/10.5281/zenodo.4300942).

RESULTS

Habitat covariate selection
We categorized 165 habitat measurements col-

lected using the CHaMP habitat protocol
(CHaMP 2016) into eleven habitat categories,
and for each habitat covariate the Maximal Infor-
mation Criteria (MIC) value was calculated
based on the strength of association between the
habitat covariate and the response variable, parr
density (parr/m; see Appendix S1 for further
details). We chose the following twelve CHaMP
habitat covariates to fit the QRF model: wetted
width, observed discharge, average August tem-
perature, wetted width:depth ratio, percent fines
less than 6 mm, total percent fish cover, channel
unit frequency, standard deviation of the wetted
depth, frequency of large wood in pools, percent

riparian canopy cover, lower quantile of sub-
strate size (D16), and braidedness (Table 2).

QRF model
A QRF model was fit using those metrics and

the quantregForest package (Meinshausen 2006)
in R (R Core Team 2019), and the 90th quantile of
the predicted distribution was used as a proxy
for carrying capacity. After model fit, we exam-
ined the relative importance of each habitat
covariate included in the model (Fig. 3), quanti-
fied by the average decrease in residual sum of
squares for splits on that variable amidst the
trees in the random forest, implemented by the
importance function from the randomForest
package (Liaw and Wiener 2002). Moreover, QRF
models allow one to visually examine the mar-
ginal effect of each habitat covariate on the quan-
tile of interest using partial dependence plots.
These plots show the marginal effect of changing
a single habitat covariate while maintaining all
other covariates at their mean values (Fig. 4).
However, given that many habitat metrics are
somewhat correlated, these marginal effects are
often not independent of one another and care
should be taken when interpreting them. After
model fitting, the QRF model was used to predict
habitat capacity at all CHaMP sites within the
interior Columbia River basin.

Extrapolating to other sites
We fit a linear regression extrapolation using

QRF-based predictions of capacity at all CHaMP
sites as the response, and various GAAs as the
independent variables. The coefficients for the
extrapolation model can be found in Table 3 and
the summary of the model fit in Table 4. From
this, we calculated estimates of capacity at every
master sample point in the Columbia River
basin, each representing roughly one kilometer
of stream length.

Model validation
Estimates of Chinook salmon parr capacity

from the QRF and extrapolation models were
comparable to independent estimates from
spawner–recruit data (Table 5, Fig. 5). QRF esti-
mates had overlapping confidence intervals with
one or more of the Beverton-Holt, Ricker, or
hockey stick model estimates in each of the nine
locations where comparisons were possible
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(Fig. 5). Potential additional uncertainty was not
accounted for in estimates of spawners-per-redd
or spawners-per-parr, which would increase the
confidence intervals around spawner–recruit
estimates and the overlap among estimates. Cor-
relations between parr capacity estimates from
the QRF model and spawner–recruit models ran-
ged from 0.710 (Beverton-Holt) to 0.966 (Ricker).
This favorable comparison provides strong vali-
dation as the spawner–recruit estimates of Chi-
nook salmon parr capacity were developed from
completely independent datasets and using
entirely different methods.

DISCUSSION

A tool to estimate habitat capacity
In this study, we developed a novel approach

to estimate the capacity of habitat to support Chi-
nook salmon parr during summer months in
wadeable streams. Our model can be used to
quantify juvenile rearing capacity in Chinook sal-
mon watersheds or populations and, in turn,
quantify the magnitude of tributary habitat reha-
bilitation that may be necessary to support

Endangered Species Act delisting. The QRF and
extrapolation models presented here provide
useful tools toward the prioritization, implemen-
tation, and evaluation of habitat rehabilitation
actions to recover depleted salmon populations.
Moreover, these models can be applied to multi-
ple stages within the life cycle (e.g., parr, smolt,
adult). Estimates of habitat carrying capacity for
multiple life stages will allow biologists and
managers to identify what life stages and/or
specific habitat patches may be limiting. As an
example, QRF models and associated extrapola-
tion models may demonstrate that habitat for a
given population is sufficient to support adult
spawning required to achieve delisting targets,
but that juvenile rearing capacity may not be suf-
ficient to support the target abundance. In such a
case, habitat rehabilitation actions may be most
cost-effectively and sustainably directed toward
improving juvenile rearing habitat. Models to
estimate habitat carrying capacity for multiple
life stages will help to better direct habitat
restoration actions and help guide not only the
type of action, but also the location at which an
action is performed.
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Fig. 3. Relative importance of each habitat covariate included in the quantile random forest (QRF) model to
predict habitat capacity, during summer months, for spring/summer-run Chinook salmon parr.
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The favorable comparison between QRF
estimates of carrying capacity and the spawner–
recruit based estimates in select watersheds helps

support and validate this approach. Although
built from completely different data, when
these multiple lines of evidence converge it
lends credence to the QRF capacity prediction
results.
There are two aspects that make this

approach data hungry, meaning a large dataset
is needed to fit a QRF model like this. First,
random forest models generally require more
data than parametric models, due to the lack
of parametric distribution assumptions and the
lack of an assumed form of the relationship
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Fig. 4. Partial dependence plots for the spring/summer-run Chinook salmon parr capacity quantile random
forest (QRF) model, depicting how parr capacity shifts as each habitat metric changes, assuming all other habitat
metrics remain at their mean values. Tick marks along the x-axis depict observed values.

Table 4. Summary of extrapolation model fits, split by
whether the extrapolation model used CHaMP
watershed as a covariate or not.

Model Response r2 Adjusted r2

CHaMP fish/m 0.481 0.454
non-CHaMP fish/m 0.360 0.339
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between dependent and independent variables.
Second, it takes larger datasets to accurately
predict the lower and higher quantiles in a
quantile regression framework. For example, if
a dataset consisted of thousands, rather than
hundreds, of data points, a researcher might
feel comfortable using the 95th or the 98th
quantile as a proxy for capacity, rather than the
90th. Our dataset consisted of 327 sites, across
a variety of habitats and years, providing con-
trast in all the habitat covariates and presum-
ably satisfying the data hungriness of a QRF
model, based on our validation with spawner–
recruit data.

Biological expectations from QRF model
The results of the QRF parr capacity model for

Chinook salmon meet many biological expecta-
tions. Focusing on the partial dependence plots
(Fig. 4), the QRF model predicts capacity to
increase when the wetted width, discharge, and
the width:depth ratio grow, temperatures are
cooler (Brett 1952, Raleigh et al. 1986, Bjornn and
Reiser 1991), there is less fine sediment (Hill-
man et al. 1987, Bjornn and Reiser 1991, Allen
2000), there is more fish cover (Hillman et al.
1987, Bjornn and Reiser 1991, Holecek et al.
2009), channel unit frequency increases, and the
standard deviation of the wetted depth (a proxy
for streambed complexity) increases. These are
all patterns that emerged from the fish–habitat
data, and where available, match those fish–

habitat relationships identified qualitatively in
other studies (Mossop and Bradford 2006).
The biggest driver of capacity identified in this

study is stream size, whether measured by wet-
ted width or discharge, which should be unsur-
prising since we are using fish per meter as our
response. In many ways, these metrics define
habitat quantity; however, other metrics used in
our QRF model help define habitat quality, such
as cooler temperatures in August, less pool-tail
fine sediment, and higher channel unit frequen-
cies (a measure of habitat complexity and surro-
gate for the number of pool-riffle sequences or
potential sheer areas providing feeding zones),
and fish cover. Metrics that describe habitat
quantity set some bounds around possible capac-
ity estimates, while metrics describing habitat
quality refine those estimates to better match
conditions at that site.

Extrapolation model
Fish are mobile creatures and determining the

appropriate spatial scale to estimate how their
capacity may be determined by habitat charac-
teristics is important. In the summer, for Chinook
salmon parr, our fish data clearly show move-
ment between multiple channel units (e.g., pool,
riffle, run), suggesting that fish are utilizing habi-
tat at a larger scale than the channel unit. How-
ever, it is unlikely that they are moving up and
down the entire watershed, and we believe the
200–600 m reaches used in this study are an

Table 5. Estimates of parr capacity from both spawner–recruit data (Beverton-Holt, Ricker, hockey stick) and
from extrapolated estimates of parr capacity from the quantile random forest (QRF) model.

Population Years (n) Adult data Parr data Beverton-Holt Ricker Hockey stick QRF

Catherine Creek 20 Spawners RST 135,387 (0.269) 103,021 (0.141) 99,921 (0.21) 190,857 (0.162)
Chiwawa River 20 Spawners Parr

Surveys
248,586 (0.24) 166,139 (0.148) 174,216 (0.184) 216,451 (0.363)

Hayden Creek 7 Spawners RST 58,394 (0.244) 65,958 (0.195) 48,351 (0.174) 121,676 (0.202)
Lostine River 17 Redds RST 196,259 (0.24) 146,982 (0.159) 144,415 (0.201) 152,493 (0.316)
Minam River 14 Spawners RST 1,309,223 (2.18) 484,810 (1.444) 662,802 (1.726) 365,338 (0.261)
South Fork
Salmon River

17 Redds RST 87,260 (0.407) 62,456 (0.265) 64,654 (0.317) 221,362 (0.142)

Tucannon River 27 Redds RST 4,791,131 (13.016) 1,234,653 (8.566) 1,922,692 (10.082) 529,223 (0.196)
Upper Grande
Ronde River

8 Spawners RST 171,607 (0.388) 168,137 (0.298) 127,052 (0.317) 200,228 (0.23)

Upper
Lemhi River

7 Spawners RST 333,229 (0.322) 229,635 (0.212) 242,637 (0.252) 269,626 (0.217)

Note: Numbers in parentheses are coefficients of variation.
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appropriate scale to capture the fish–habitat rela-
tionships that define carrying capacity. At the
same time, we acknowledge that managers, life
cycle modelers, and others are often interested in
capacity estimates at larger spatial scales. While
our QRF model can provide site-specific esti-
mates of carrying capacity derived from paired
fish–habitat data, our extrapolation model allows
for estimates at larger spatial extents, such as
watershed and population levels. This is an effi-
cient technique to leverage existing relationships
for meaningful management decisions.

Our extrapolation model was focused on
extrapolating to other master sample points

because that is the dataset available to us, but the
methodology could be improved. Extrapolating
to reaches on a stream network, as opposed to
points on the landscape, could improve the inter-
pretability of the results. This would require a
stream network with relevant attributes attached
to each reach, similar to the GAAs we used.
Another approach could be to move toward sam-
pling habitat in a more spatially continuous fash-
ion, covering most or all of a watershed, and
building a QRF model from that dataset. Even if
the fish data were not collected continuously,
estimates of capacity could be made directly
from the QRF model across the entire stream
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Fig. 5. Spawner–recruit data from nine watersheds. Solid lines are the spawner–recruit curve, dashed lines are
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Beverton-Holt models, purple to Ricker models, blue to hockey stick models, and green to QRF estimates. The
QRF solid curve is a Beverton-Holt model with the capacity parameter fixed to the QRF estimate of capacity. A
few curves with high capacity estimates were not plotted to improve readability.
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network without the need for an extrapolation
model.

One of the potential downsides to the extrapo-
lation approach used here is that the GAAs gen-
erally do not change through time, and therefore
may not reflect the dynamic nature of changing
stream habitat. While the QRF model itself uses
habitat characteristics that can be observed to
change over the course of several years, most
GAAs are static, generally derived remotely or
from another model. This is the nature of extrap-
olating to such large spatial extents; it can be
impossible to gather actual habitat data on such
a scale, but with improvements in remote sens-
ing, spatially continuous data (modeled or mea-
sured) may be on the horizon (Tonina et al.
2019).

The future: improving habitat data
Given the cost/extent of data necessary for

QRF extrapolation in watersheds outside of the
Columbia River basin, there is a pressing need to
develop new tools for habitat analyses.
Unmanned Aerial Systems (UAS or drones, com-
monly) are gaining popularity in wildlife and
ecosystem monitoring for their ease of use,
safety, accessibility, and cost-efficiency (Jones
et al. 2006, Chabot and Bird 2015). UAS produce
high-resolution, permanent data at a fraction of
the cost of on-the-ground habitat sampling.
Advances in imaging techniques (e.g., multispec-
tral imaging) and post-processing (e.g., automa-
tion of data collection from imagery) are already
demonstrating an increase in the efficiency and
accuracy of data collection (Whitehead and
Hugenholtz 2014, LeCun et al. 2015, Weinstein
2018). Further, developments in Light Detection
and Ranging (LiDAR) technology have allowed
for the characterization of watershed scale geo-
morphologic and hydraulic variables not previ-
ously possible (McKean et al. 2008, Tonina et al.
2019).

Development of a standardized protocol to
incorporate remotely sensed data (LiDAR, aerial
imagery) into the collection of habitat metrics
would greatly increase the broadscale applica-
tion of QRF. Rapid advances in drone technology
further improve upon traditional habitat data
collection by leveraging (1) sub-meter global

navigation satellite system (GNSS) receivers; (2)
cost-effective drone imagery collection, image
stitching, and photogrammetry; and (3) semi-au-
tomated to automated data post-processing. All
data collection efforts would be georeferenced
and topologically compatible to increase repeata-
bility of methods and data collection locations; a
primary criticism of previous CHaMP survey
efforts. The implementation of such a protocol
would circumvent the need to extrapolate by col-
lecting data for individual channel units in a
rapid manner using remote sensing technologies,
thereby reducing labor, providing a cost-effective
tool for habitat data collection supporting status
and trend evaluation and model products to bet-
ter inform habitat rehabilitation prioritization
and planning.

Conclusions and next steps
If a species’ carrying capacity is defined or con-

strained, at least in part, by the habitat in which
it lives, then illuminating statistically how such
habitat impacts carrying capacity can lead to
understanding how a species interacts with its
environment. This understanding could be of
crucial importance in the realm of conservation
when dealing with an endangered or threatened
species, but species/habitat interactions are a core
element of ecological studies more generally. We
have demonstrated how a quantile regression
approach, coupled with a random forest frame-
work, can be used to estimate these relationships
and predict a habitat’s capacity. As large ecologi-
cal datasets become more accessible, and the
ability to measure large swaths of habitat more
feasible, we believe this approach has many
potential applications, from the North American
breeding bird survey to groundfish trawl sur-
veys. The framework could also be applied to
depleted, non-migratory, and isolated popula-
tions (e.g., desert pupfish Cyprinodon macularius)
to identify limiting factors in populations and/or
determine whether a given habitat patch could
support a viable population if limiting factors
were addressed. Capacity estimates could also be
used to evaluate potential translocation sites to
determine whether those sites could support an
abundance considered viable before investing in
translocation efforts.
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